首页> 外文OA文献 >Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland
【2h】

Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland

机译:从航空照片和激光雷达数据得出的大地质量平衡记录具有严格的不确定性估计–来自冰岛西北部Drangajökull冰帽的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we describe how recent high-resolution digital elevation models (DEMs) can be used to extract glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajokull ice cap, NW Iceland. This ice cap covered an area of 144 km(2) when it was surveyed with airborne lidar in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high-resolution lidar DEM. The lidar DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice-and snow-free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical semivariogram model, which along with the derived errors in ice-and snow-free areas were used as inputs into 1000 sequential Gaussian simulations (SGSims). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM and the 95% confidence level of this bias. This results in bias correction varying in magnitude between 0.03m (in 1975) and 1.66m (in 1946) and uncertainty values between +/- 0.21m (in 2005) and +/- 1.58m (in 1946). Error estimation methods based on more simple proxies would typically yield 2-4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional seasonal bias correction was therefore estimated using a degree-day model to obtain the volume change between the start of 2 glaciological years (1 October). This correction was largest for the 1960 DEM, corresponding to an average elevation change of -3.5m or approx. three-quarters of the volume change between the 1960 and the 1975 DEMs. The total uncertainty of the derived mass balance record is dominated by uncertainty in the volume changes caused by uncertainties of the SGSim bias correction, the seasonal bias correction and the interpolation of glacier surface where data are lacking. The record shows a glacier-wide mass balance rate of (B) over dot = -0.26 +/- 0.04m w.e.a(-1) for the entire study period (1946-2011). We observe significant decadal variability including periods of mass gain, peaking in 1985-1994 with (B) over dot = -0.27 +/- 0.11m w.e.a(-1). There is a striking difference when (B) over dot is calculated separately for the western and eastern halves of Drangajokull, with a reduction of eastern part on average similar to 3 times faster than the western part. Our study emphasizes the need for applying rigorous geostatistical methods for obtaining uncertainty estimates of geodetic mass balance, the importance of seasonal corrections of DEMs from glaciers with high mass turnover and the risk of extrapolating mass balance record from one glacier to another even over short distances.
机译:在本文中,我们描述了如何使用最新的高分辨率数字高程模型(DEM)从旧的航空照片中提取冰川表面DEM,并评估从DEM得出的质量平衡记录的不确定性。我们目前以冰岛西北部Drangajokull冰帽为例。该冰盖在2011年进行了机载激光雷达的调查时覆盖了144公里(2)。横跨所有或大部分冰盖的航拍照片可从1946年,1960年,1975年,1985年,1994年和2005年的调查飞行中获得。用于约束航空照片方向的所有地面控制点均从高分辨率激光雷达DEM获得。激光雷达DEM还用于估计在无冰和无雪地区,努纳塔克地区和冰川边缘以外地区提取的摄影测绘DEM的误差。每个DEM的派生误差用于约束球形半变异函数模型,该模型与无冰和无雪地区的派生误差一起用作1000个顺序高斯模拟(SGSims)的输入。仿真用于估计DEM整个冰川部分的可能偏差以及该偏差的95%置信度。这导致偏差校正的幅度在0.03m(在1975年)和1.66m(在1946年)之间变化,不确定性值在+/- 0.21m(在2005年)和+/- 1.58m(在1946年)之间变化。基于更简单的代理的错误估计方法通常会产生2-4倍大的错误估计。所使用的航空照片是在6月下旬至10月初之间获得的。因此,使用度日模型估算了额外的季节性偏差校正,以获得2个冰川年份(10月1日)开始之间的体积变化。这项校正对于1960年DEM来说是最大的,对应于-3.5m的平均高程变化或大约0.5m。 1960年和1975年DEM之间的交易量变化的四分之三。导出的质量平衡记录的总不确定性主要是由SGSim偏差校正,季节性偏差校正和缺乏数据的冰川表面插值的不确定性引起的体积变化的不确定性。记录显示,整个研究期间(1946-2011),整个点的冰川全量质量平衡率为(B)= -0.26 +/- 0.04m w.e.a(-1)。我们观察到重大的年代际变化,包括质量增加的时期,在1985-1994年达到峰值,(B)点超过-0.27 +/- 0.11m w.e.a(-1)。当分别为Drangajokull的西半部和东半部计算(B)over dot时,存在惊人的差异,东部的平均降低速度比西部的平均降低速度快3倍。我们的研究强调需要应用严格的地统计学方法来获取大地质量平衡的不确定性估计,从具有大质量周转的冰川中对DEM进行季节性校正的重要性以及将质量平衡记录从一个冰川推算到另一冰川甚至短距离的风险。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号